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THECRETICAL DETERMINATION OF WATER ILOADS ON PITCHING
HULLS AND SHOCK-MOUNTED HYDRO-SKIS

By Emanuel Schnitzer

SUMMARY

A quasi-steady theory is developed for the unsteady plane motion of
seaplanes with high length-beam ratios and of shock-mounted hydro-skis
impacting on & water surface while undergoing pitching rotation. This
theory 1s based on a dynamic-camber equivalent in which a pitching flat
plate immersed in a stream is replaced instantaneously by a stationary
cambered airfoil for which similar fluid particle trajectories exist at
the boundary. Since experimental hydrodynamic data were unavailable for
verification of the proposed theory, comparisons are made with classical
two- and three-dimensional linearized airfoil theory for steady and
unsteady submerged motion and with a more approximate method that neg-
lects the rotational effect on the pressure distribution. The agreement
with the two~dimensional unsteady oscillating airfoil theory is not very
good because of the presence of a large unsteady circulation term but
the three-dimensional comparisons, which include, in addition, some
osclllating airfoil data of aspect ratio 2, indicate fair agreement. The
effect of rotation on the longitudinal pressure distribution for upward
pitching is seen to broaden the stagnation peak and decrease the instan-
taneous ratio of maximum to average pressure, whereas downward piltching
is seen to yileld the opposite result. From the eomparison with the more
approximate method that neglects rotational effects on the pressure dis-
tribution, it is deduced that the effects of rotation might be important
for some practical narrow-hull impacts but the more approximate theory
could be used for the trimming shock-mounted hydro-skl cases considered.
The loads predicted by the proposed theory for the trimming shock-mounted
hydro-ski are less than those for the fixed~trim hydro-ski. The proposed
theory might also be useful for calculations for a low-aspect-ratio
pitching hydrofoil. Applications of a cambered airfoll theory to the
determination of water-pressure distributions on hulls with pulled up
bows are indicated. Appendixes containing exact solutions for the pres-
sure distribution, load, and moment on a cambered airfoil immersed in a
stream at a finite angle of attack are inecluded. - Step-by=-step computa-
tional procedures with data-sheet headings for application of the proposed
theory to seaplane hulls with high length~beam ratios and shock-mounted
hydro-skis impacting on a water surface and involving rotation in pitch
are also given in an appendix.
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INTRODUCTION

This paper is concerned principally with the theoretical determina-
tion of the hydrodynamic loads and motions experienced by shock-mounted
hydro-ski-equipped aircraft, seaplanes with high length-beam ratios, and
other relatively narrow bodies undergoing unsteady planing motion on a
water surface and involving pitching rotation. Although a water-impact
theory for the freely trimming wide float has been developed, it is not
believed that such a theory can be extended to cover the narrow-body case.
Also, although much information is available for the oscillating airfoil
covering a fairly complete range of aspect ratios from O to «, most of
these theories are only applicable for small oscillations at small angles
of attack. They are further restricted to deeply immersed bodies, whereas
a hydro-ski or seaplane may have only the lower surface wetted. Another
limitation to the use of the oscillating airfoll theory for unsteady
planing on water arises because the wing-chord is constant, whereas the
hydro~-ski or flying-boat-hull wetted length is continually changing.
Modifications of such airfoil theory to cover the hydrodynamic case have
been made by Glauert and Perring (ref. 1) to take into account the sur-
face of discontinuity and by Sedov (ref. 2) to include variable body
shape and a changing wetted length.

In order to apply Sedov's method to nonharmonic motions such as
water impacts, Fourier series solutions may be made. Such solutions are
allowable since linearizing assumptions have been incorporated in the
derivation. Since, however, hydro-skis operate at relatively high angles
of attack, it 1s possible that such linearizations may not lead to reason-
able approximations for actual operating conditions. This is one of the
main reasons that these methods were not utilized in the present paper.

In order to obtain solutions to the unsteady planing problem appli-
cable for practical angles of attack, an approximate dynamic-camber theory
has been developed instead for the pressure distribution on pitching
bodies during water impact. The purposes of this paper are to present
this theory, to corroborate its accuracy insofar as possible, and to apply
this theory and a more approximate version thereof to solving trimming
hull and hydro=-ski impact problems. The proposed dynamic-camber theory
is based on the premise that a pitching flat plate deeply immersed in a
stream may be replaced instantaneously by a stationary cambered airfoil
for which similar flow particle trajectories exist at the boundary. It
is believed allowable to apply this type of airfoil theory, where the
entire foil is deeply immersed, to the hydrodynemic case where only the
lower surface may be immersed in fluid, on the basis of Herbert Wagner's
demonstration (ref. 3) that the longitudinal pressure distribution on
the underside of a wing is very similar to that on the underside of a
planing plate. The classical cambered airfoil theory is extended herein
to include high angles of attack and finite cambers, which, when inter-
preted in terms of the pitching flat plate, are equivalent to apprecisble
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angular velocities at high trims. This equivalence comes from the quasi-
steady adjustment of the airfoil camber at each instant to conform approx-
imately to the instantaneous path lines of the particles moving along the
rotating flat plate. Aspect-ratio corrections are applied to modify the
pressure distributions for three-dimensional flow about the cambered

airfoil.

In this paper an approximate theory for unsteady motion with rota-
tion in pitch is first developed and compared with other theories and
experimental data for oscillating wings. The load and motion equations
for pitching hulls and hydro-skis are then developed and presented along
with solutions for a few example cases. Several appendixes which are
utilized in connection with the development of the theory and which pre-
sent computational procedures for making solutions of pitching-hull and
shock-mounted hydro-ski problems are included.

SYMBOIS
A aerodynamic aspect ratio
B ratio of average pressure in transverse plane to longitudinal

center~line pressure in plane

b beam of body
¢ center-of-pressure coefficient relative to st =
cp D € € €D, 7 ?\Wb
N
Cr, three-dimensional 1ift coefficient, L
g su?
2
c, section 1ift coefficient, L/b
p 2
é‘ cU
. - M M
Cn three~dimensional moment coefficient, —= or >
8 sev R
cm " section moment coefficient, —¥12~§ or ——lﬂél—7§
2 2
'y
Cy three~dimensional hydrodynamic-force coefficient, ——5—
L pou°
2 P
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F/b
CN section hydrodynamic-force coefficient, __HL__§

£ AU

2
Ca beam loading coefficient, W

)
Pg

c wing chord
D aserodynamic drag force, positive in aft direction
d damping exponent
iH distance along ski between pivot and step or along hull between

center of gravity and step measured parallel to keel, positive
when measured aft (see fig. 5)

F force taken positive in upward or aft direction

T function

G damping constant, strut compression

G' damping constant, strut extension

g acceleration due to gravity

H coefficient in Blasius solution

h half height of cambered foil at maximum point (see fig. 2)

I pitching moment of inertia of trimming body

J distance between keel and center of gravity measured normal to

keel (see fig. 5(a))

K spring force coefficient

k reduced-frequency parameter, cw/2U

L aerodynamic 1lift force, positive in upward direction

A length of body below undisturbed water surface (see fig. 5)
[ length of body below elevated water surface (see fig. 5)
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M pitching moment, considered positive in a nose-up direction

P distance along hydro-ski between pivot and shock-strut attachment

P fluid pressure

q resultant velocity of fluid, Ju2 + v2

R radius of cylindrical wing (see fig. 2)

r longitudinal distance between step or trailing edge and center
of pressure (see fig. 5)

/Q real part of

S wing plan-form area

t time

U free-stream veloclty at infinity for stationary body, and
equivalent forward velocity x + EE%—; - zT for moving body

u velocity of fluid in X-direction

v resultant velocity of impacting body

v velocity of fluid in Y-direction

W weight of aircraft supported by each hydro-ski or hull

W complex potential

Xy horizontal displacement for determination of equivalent ¢Gamber

X forward displacement of impacting body

MY vertical displacement for determination of equivalent camber

Z draft or downward displacement of body normal to undisturbed
water surface

Z =X+ 1iY

Z' = X' + iy!? coordinate axes systems for conformal transformations

R (see fig. 2)
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o inclination of stream flow to chord of airfoil (angle of attack)
T instantaneous circulation
7 flight-path angle
A b &e

e} angle defining effective camber, -0 or Iy radians
é velocity of hull or hydro-ski normal to keel, positive downward
e argument of z"
K approach parameter for free-=body landing, Ei%—%—(cos T + 70)

: 0
A length of float or hydro-ski below undisturbed water surface

divided by mean beam

Ny length of float or ski below elevated water surface divided by
mean beam

3 longitudinal distance along thord or keel measured from trailing
edge, positive forward

P mass density of fluid

T trim of ski or hull relative to undisturbed water surface,
positive in nose-up direction

¢L phase angle between angle-of-attack vector and 1ift vector,
positive when angle-of-attack vector is leading

¢M phase angle between angle~of-attack vector and moment vector,
positive when angle-of-attack vector is leading

o(A) aspect-ratio correction

W circular frequency of oscillation

Subscripts:

a at pivot (see fig. 5(b))

a' at connection point of shock strut to ski (see fig. 5(b))

e effective value

g gravity
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LE about leading edge

N hydrodynamic normal

n point number

0 at contact

D aerodynamic pitching

r hydrodynamic afterbody

8 about step

X extrapolated quantity

o derivative with respect to «
o,1,2,... successive terms in a series
" about origin (located below midchord) (see Z-plane in fig. 2)
o maximum value

0 Infinity

A bar over a symbol means that the symbol pertains to the mass
center of the trimming body or to the complex conjugate in appendixes A
and B. An asterisk denotes that rotational effects have been included.
Dots over symbols denote the derivatives with respect to time.

DEVEIOPMENT OF THEORY FOR UNSTEADY MOTION
WITH ROTATION IN PITCH

Concepts of Approach

In order to develop an approximate theory for the oblique impact
or unsteady planing of a relatively narrow pitching body on a water-
surface, the following reasoning was applied. First, for the simplified
case of oblique impact at fixed trim, it has been shown in previous
hydrodynamic publications that this case can be replaced at each instant
by an equivalent planing case for which a similar load distribution
exists. The criterion for this similarity was found to be that the hori-
zontal velocity U of the forward intersection line of the body with the
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water surface must be equal for both cases. This is demonstrated in
the following sketches:

¥ ___ ¥

Fixed-trim impact Fquivalent planing

The effects of pitching rotation which are also taken into account
in the present paper can be divided into two parts. The first part is
the effect of the rotational velocity in modifying the effective planing
velocity as illustrated by the following sketches:

U = x Z ZT
tan T sin2T
Trimming impact Equivalent planing (first approximating step)

The second part of the rotational effect is the modification of the longi-
tudinal distribution of load or pressure caused by the influence of body
rotation on the flow field. Although this second effect might be hHandled
by classical oscillating airfoil theory, the two-dimensional theory does
not apply for low-aspect-ratio bodies and the available low-aspect-ratio
theory is not believed to give closed-form solutions. Therefore, a quasi-
steady approximation was developed based on the premise that the effect

of pitching rotation on a flat plate could be obtained from an instanta-
neously equivalent cambered airfoil planing on a water surface as shown
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in the following sketches:

T~

Trimming impact Equivalent planing (second approximating step)

The degree of camber 2h in the rightwhand sketch, of course, depends on
the pitching velocity.

The development and testing of this dynamic-cember concept is organ-
ized as follows. First, the cambered form is derived as the quasi-steady
equivalent of the pitching wing. Then, the longitudinal pressure distri-
bution is determined for the entire cambered form in deeply submerged flow
and for a planing form with only the bottom side wetted. The application
to water loads on pulled-up bows is indicated in passing. In order to
verify the pressure distributions, loads and moments are obtained for the
cambered form undergoing steady motion and are compared with linearized
theory. The proposed dynamic-~camber equations for the pitching wing are
presented and tested at the zero-trim end point against classical two-
and three~dimensional linearized airfoil theory for unsteady motion and
with low~aspect-ratio oscillating airfoil data after incorporating the
required aspect-ratio corrections into the proposed theory.

Derivation of Cambered Form as Quasi~Steady Equivalent
of Pitching Wing

A simple quasi-steady theory for approximating the flow about a
pitching two-dimensional flat-plate wing may be derived on the assumption
that for relatively slow rotation the boundary for the pitching wing mey
be replaced at each instant by a different fixed-cambered boundary for
which simllar particle trajectories exist along the surface. Thus, the
path lines traced by these particles during any small time interval would
be similar for both cases. The fixed boundary is then defined by the
motion of the particles during this small time interval along the flat
surface of the plate which is rotating at some instantaneous angular
velocity & in a field of flow having a mean translational velocity U.
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In order to determine the form of this fixed boundary, figure 1(a) which
shows a sectional view of the rotating plate is introduced. From this
figure the incremental horizontal distance traversed by a partical moving
along the surface in the time 4t is

dxq = U dt (1)

In the same time interval the plate has rotated through the angle da.
The approximate downwash velocities of the particle as it moves from the
point Xq to the point Xy + dxl are given respectively by the equations

91 = ~Ug - Xl&
(2)
¥+ dyl = -U(a + da) - (Xl + dxl)a

The incremental change in downwash velocity expressed by Q&l should be

identical to that for a particle moving along the hypothetical fixed-
cambered boundary (fig. 1(b)) for which the dowvmwash velocity at
points Xy and Xy + dxl are, respectively, written

:)', = U 1
l " (3)
¢ 3
. . dy dy.
yl + le =0 L + 4 __l
ixl i'KIL J

Therefore, equating the change in downwash d&l for both the rotating

plate and the stationary cambered plate and making use of equation (1)
leads to the expression

. dy .
dyl=Uda-x—]]—:=-2Uadt (%)

Equation (4) can be integrated twice with respect to Xy, after again

making use of equation (1), to yield the shape of the equivalent stationary
cambered airfoil v = f(xl) which is described by the equation

yl = -(I.Xl - T (5)
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Equation (5) may be restated in nondimensional form by dividing by the
half chord c/2

072 c72 c72
where, for convenience, dc<2U is designated . A plot of this equa~
tion is shown in figure 1(b) for a = 10° and & = 0.1 which are believed

to be realistic conditions for the trimming high-length-beam-ratio sea-
plane and for the shock-mounted trimming hydro-ski. If equation (6) is

x
evaluated at the points —%E = *1 (the leading and trailing edges of the
c
cambered airfoil), it is found that

%%5 = =, - O <§%§ = +%>
< (7)

1 X1
=—8 F -

so that in figure 1(b) the angles An = 5 are seen to define the sta-
tionary cambered form. Therefore & = G¢/2U can be thought of as an
effective instantaneous dynamic camber of a flat plate of chord ¢ rota-
ting at angular velocity a in a stream flowing with velocity U.

Equation (6) is seen to represent a parabolic arc at an angle of
attack o« +to the stream. It will be assumed for convenience that a cir-
cular arc will approximate equations (5) or (6) to a reasonable degree in
this paper for application to calculations for practical hull or hydro-
ski-equipped seaplanes. This is permitted since the maximum deviation
between equation (6) and a circular arc drawn through the origin and end
points of the example airfoil of figure 1(b) is of the order of 0.00lc.

Longitudinal Pressure Distribution on Equivalent
Circular-Arc Airfoil

In order to make solutions for the trimming plate it is first neces-
sary to obtain the potential solution for the two-dimensional flow about
the instantaneously equivalent circular-src airfoil at finite angle of
attack. This derivation is presented as appendix A and is an extension
of the exact solution for a circular-arc airfoil at O° angle of attack
given in an appendix of reference 4, The solution presented herein is
based on the transformation of the circle in the Z"-plane (see fig. 2)
into the off-center circle in the Z'-plane which is then converted into
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the circular-arc airfoil in the Z~plane by a Joukowski transform. The
derivation was required since the pressure distribution on the lower sur-
face of the plate must be known and it is not available from published
thin airfoil theory. In addition, since large negative pressures are not
believed to exist in the region of the forward water line, the concept of
an effective length or chord ce which extends from the rear of the air-
foil forward to the point of zero pressure immediately ashead of the stagna-
tion point will be applied. As stated in the introduction, Jjustification
for utilizing the lower surface pressure from the flow about a completely
submerged body to represent the flow about a body planing on a surface of
discontinuity was given by Wagner. This material is presented in figure 24
of reference 3 which presents a comparison of the immersed and planing
cases up to relatively high trims. The agreement appears exceptional.

In figure 3 are presented plots of equations (A24) and (A26) of
appendix A showing the variation, with fractional effective chord g/ce
of fluid pressure ratio L on the lower surface of two~dimensional

Epa
cambered plates. Here £ 1is defined as the distance from the trailing
edge measured forward along the chord and the pressure ratio is defined
as the pressure at a point divided by the stagnation pressure due to the
forward velocity. A wide range of trims and cambers are covered in these
plots. Inspection of these pressure diagrams leads to the following two
significant points on the behavior of a trimming hull or hydro-ski. Rela-
tive to the fixed-trim body, the effect of rotation which is a funection
of ® can be observed as a decrease in midchord pressure for downward
trimming (-5) which should shift the center of pressure forward, and an
increase in midchord pressure for upward trimming (8) which should shift
the center of pressure aft. The effect of increasing angle of attack is
to broaden the stagnation peak and decrease the instantaneous ratio of
maximum pressure to average pressure while a decreasing angle of sattack
yilelds the opposite result. This effect may be significant for hulls
having large bottom panels which might be designed stronger to withstand
higher average pressures during upward pitching or having small bottom
panels which might have to be stronger to take the high local pressures in
downward pitching. The effects of rotation on pressure distribution may
also be derived from classical linearized osclllating wing theory of
reference 5.

Application of Pressure Distributions on Cambered
Airfoils to Hulls or Hydro-skls Having

Longitudinally Curved Bows

As stated previously, figure 3 presents longitudinal pressure distri-
butions which may be directly applied in accordance wilth dynamic-camber

—_—

ﬁ
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concepts to calculation of loads and motions of pitching hulls and hydro-
skis with rectangular, flat bottoms. These pressure distributions may
also be used directly for straight hulls and hydro-skis having curved-up
bows during fixed-trim impact or planing on a water surface. In order

to take into account the effect of aspect ratio for both of these cases
however, a method which was devised in reference 6 is used. This method
is described in detall in a subsequent section of this paper. When the
plots of figure 3 are applied to bows of small upward curvature, the
entire body may be considered to be curved longitudinally, the wetted
chord extending from the step to the bow-water-air intersection. For
large bow curvature, the body may be broken up into two lengths, straight
and curved. The wetted chord of the bow arc extends from the forward
edge of the straight section to the bow-water-air intersection. For this
case, the overall longitudinal pressure distribution is made up of the
pressure distribution for the curved section (5 finite) for the bow
reglion and the distribution for the straight section wherein the whole
body is assumed to be flat (5 = 0). The forward part of the distribution
for & = 0 extending over the curved-bow region is thrown away, the
distribution for & finlte utilized in its place, and suitable fairing
of the pressure curve at the body inflection point is employed. The
normal-force coefficients required in applying the aspect-ratio correction
may be determined from planing data obtained with the model In question
or as a very rough approximation from the normal-force coefficients for
the flat-plate case where the equivalent flat plate might possibly be
represented by the wetted chord from the step to the bow-water-air inter-
section. The trim of this chord line is the trim used in obtaining theo-
retical or experimental normal-force coefficients for the flat-plate case.

Loads and Moments on Cambered Airfoil

In order to verify partially the theoretical pressure distributions
for a cambered airfoil in deeply immersed flow as given iIn appendix A,
the loads and moments obtained by integration of the pressure equations
for small trims might be compared with classical linearized thin-airfoil
theory. Direct integration of the proposed parametric pressure equa-
tions (A2L4) and (A26) in appendix A in order to obtain the loads and
moments, however, appeared to be inconvenient so the method of Blasius
(refs. 7 or 8) was used. Appendix B presents this solution.

The two-dimensional 1ift coefficient about the circular-arc airfoil
for finite angles of attack is derived according to the method of Blasius
in appendix B and is given as equation (Bl7). This equation is repesated
here for convenience

. .
/o = 2x(sin @ cos o + cos2a tan B) (8)
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which, for small angles of attack and camber, reduces to the linearized
equation for the thin airfoil (eq. 10.8, ch. II, ref. 9)

cy = 2:r(or, + h]%) (9)

where h% = tan & is a measure of the camber as shown in figure 2 of

the present paper. The upward trimming-moment coefficient about the
leading edge for finite trims derived in appendix B as equation (B26) is

Min/b s
om, IR = QLE_ZU[___g = - 122[3&1.“_%?_2 + tan 5(1 + cos2a)} (10)
5 c [e10]3)

which for small angles reduces to

°m,IE = -(% o + 41:%) (11)

which is the same as the linearized equation for the thin airfoil

(eq. 10.8, ch. II, ref. 9) except for the minus sign in equation (11)
which arises from opposite positive moment conventions between this paper
and reference 9.

Camparison of Dynamic-Camber Equations With
Two- and Three-Dimensional Unsteady Linearized Airfoil Theory

It was shown previously that the angular velocity of an airfoill in
plane motion involving pitching rotation could be expressed as an equiv-

alent dynamic camber defined herein as b = &C/EU where & = tan~% h%

for the equivalent stationary airfoil. If in equation (9) 4% is con-

sidered according to this dynamic-camber concept and &c/EU is substituted
in its place, then equation (9) can be considered as a linearized approxi-
mation to the two-dimensional rotational case for a flat plate. Since
comparisons are to be made in this section with linearized theory where o
approaches zero, the proposed theory will be altered similarly for this
comparison with the result that tan & approaches 8. Equation (9) can
therefore be rewritten as follows

* = = ac
¢y on(a + ) 2:1:(@ + 50 (12)

e
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where the asterisk denotes the added rotational effects. Rotation is
assumed tc occur about the center of the wing chord; hence, lift forces
due to acceleration of the virtual mass are assumed to be nonexistent.

The equation for the moment coefficient, on the other hand, should include
a virtual mass torque which acts in the direction opposing the angular

2..
acceleration and has the form - g—i-% (See ref. 5.) Thus the equation
U
for the two-dimensional moment coefficient about the origin including the
effects of rotation may be written

Cmp = 5 T TS (13)

In this equation the & +term drops out because of symmetry sbout the
origin or midchord. This term appeared as the second term on the right

side of equation (11) as —hﬁ%.

A simple comparison between the linearized dynamic-camber equations
(egqs. (12) and (13)) and the linearized theory for the oscillating airfoil
(ref. 5) can be made for the case of a flat-plate airfoil at 0° angle of
attack exhibiting small sinusoidal oscillations in attitude while immersed
in a streaming fluid. For this case the Instantaneous angle of attack may
be expressed

a = aceiwt (lll-)

where ¢ vrefers to the maximum value, 1 1s the complex imaginary
indicator V:i, w 1is the circular frequency of oscillation, and t is
the time. The instantaneous angular veloclty and acceleration are there-
fore, respectively,

- do _ s : s

@ =gF = 1wacelwt = iox (15)

.o a8 2 iwt _ _2

a=%2 = g et = o (16)
at? °

Thus equation (12) may be restated as

*

"

ﬂn&c)

21 +
(“ 20

€1
(17)

]

2 4 L
n’a,o-e 1 U
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and, if cw/2U is designated k, the reduced-frequency parsmeter of
reference 5, this equation becomes

*
c -1
1 ol + 2 oilwtetan=lic) (18)
‘JICLO—
The comparsble equation of Theodorsen (ref. 5) is
e p* 1 (b tard KHEF2G)
1. \[(QF - kG)2 + (k + KF + 26)° e 2F-KG (19)
. ,

for which the F and G functions have been evaluated and plotted in
reference 5. (These functions are not defined in the present paper.)
The amplitude of the 1lift vector of equation (18) is compared with that
of equation (19) in figure 4(a) while the phase angles by which the lift
leads the instantaneous angle of attack are compared in figure 4(b).

In figure h(a), considerable disagreement is shown between the proposed
theory and that of reference 5 for calculating the magnitude of the 1ift
vectors for the infinite-aspect-ratio case. Most of this discrepancy is
believed to arise from the omission of certain frequency-sensitive circu-
lation terms from equation (18) which are to be found in equation (19).
The phase angles in figure h(b) do not seem to be affected as severely.

The moment coefficient equation about the origin may be derived in
a similar manner and is stated

*
__.cmp' = .]; <]_ + ﬁ)eiﬂ)‘t ( 20 )
fag 2 8

whereas the comparable Theodorsen equation is

k_ g K
1a)t+‘tan"l]2§G 21{
*
2\2 2 - S
Cmp - 1 J(xG _ _k) k _ __k_f:) 2 8
Ay 2\/(2 o)tz 2) © (21)

where as before, the F and G functions are those which were tabulated
in reference 5. The amplitude of the moment vector of equation (20) 1is
compared with that of equation (21) in figure 4(c) and the phase angles
by which the moment leads the instantaneous angle of attack are compared
in figure 4(d). The disagreement between the moment vectors for the
infinite-aspect-ratio case is similar in nature and magnitude with that
of the lift vectors. The dynemic-camber system predicts no phase

—
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difference between the moment vector and instantaneous angle of attack,
whereas the exact theory shows a lagging phase angle. From these compar-
isons, it 1s concluded that the proposed theory should be used with
caution for pitching bodies of large aspect ratio.

A better picture is presented for the case of low-aspect-ratio bodies
which are the primary consideration in this paper. The dynamic-camber
lift equation (12) may be further modified to include the effects of
aspect ratio by assuming that both the term proportional to angle of
attack and the term proportional to angular velocity of the airfoil are
affected in a similar way by three-dimensional flow. On the basis of
this assumption and utilizing Helmbold's airfoil aspect-ratio correction
for zero sweep angle (refs. 10 and 11), equation (18) becomes

oy _ 2( A >\{1 . 2 ei(wt+tan"lk) (22)
2 +

iy \}bf + AP

The aspect-ratio correction @(A) = —————JL-T::: is believed to be fairly
2 + 4 + AZ

accurate for all aspect ratios greater than 1. Equation (22) is plotted
in figure 4(a) along with data obtained with an oscillating flat-plate
airfoil of aspect ratio 2 (ref. 12). The three-dimensional linearized
theory of reference 13 is also plotted for comparison. The agreement
seems fair and probebly indicates that the particular circulation term
which was so affected by frequency for the infinite-span case 1s probably
small for the low-aspect-ratio case. The phase-angle comparison, plotted
in figure 4(b), also shows in general fair agreement for the low-aspect-
ratio case.

As regards the pitching moment, the Helmbold aspect-ratio correction
cannot generally be used since the shape of the longitudinal pressure
distribution is believed to depend on aspect ratio. Therefore, for the
moment case, aspect ratioc is taken into account as follows: The two-
dimensional dynamic-camber moment equation (13) may be extended to the
three-dimensional case by assuming that the instantaneous longitudinal
pressure distribution for the three-dimensional case is the same as that
for the two-dimensional case having the same instantaneous section 1lift
coefficient even though the trims are different for the two cases. This
technique was applied to the nonrotating case in reference 6. On this
basis, the linearized three-dimensional 1ift coefficient for fixed atti=~
tude may be expressed as

- Cp, = 2np(A)a - (23)
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where ©®(A) may be Helmbold's aspect-ratio correction for aspect ratios
greater than 1. The desired two-dimensional section 1ift coefficient is
obtained by dividing the actual three-dimensional 1ift coefficient by the
ratio of the average pressure in a transverse plane to the pressure st
the intersection of that plane with the longitudinal center line. Since
reference 6 leaves this question open, a choice of Bobyleff's coefficient
(refs. 14 and 15) has been made. Therefore, the desired section lift
coefficient may be expressed as

27%P(A)a
, = 2o o (24)
where ag = @(g)a is the effective two-dimensional angle of attack

giving the proper longitudinal center-line pressure distribution for the
three~dimensional case of angle of attack o. The same aspect-ratio
correction may be used for the a +term as was used for the o term as
long as the aspect ratio exceeds 1. For the hydro-ski case, smaller
aspect ratios are encountered so that virtual mass terms might be modi-
fied for three dimensions by a more appropriate correction developed by
Pabst (ref.. 16) from measurements obtained on oscillating bodies submerged
in water.

The moment coefficient about the midchord line for a trimming flat-

plate airfoil having an aspect ratio greater than 1 is therefore obtained
by applying the above technique to equation (13)

* R e

gty o(8)
_ <rr_a _ @>¢(A) (25)
2 e

Since the term proportional to o does not appear in the dynamic-
camber moment equation (eq. (13)) because of its symmetrical effect about
the origin or moment axis, it is omitted here also. It is seen from
equation (25) that, for the linearized case, the aspect-ratio correction
may be applied to the section momént equation by direct multiplication
as was done for the 1lift coefficient in equation (23). For sinusoidal
oscillations, equation (25) becaomes

Coy (A)( k2) :
EC(I—O- = =5 1+ —8-— elwt (26)
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This moment vector is plotted in figure 4(c) along with the data of
reference 12 and the Lawrence and Gerber theory (ref. 13). The agree-
ment also seems failr for the low-aspect-ratio case. The phase-angle
data plotted in figure 4(d), however, predicts no phase lag for the
dynamic-camber equations, whereas the more exact theory and the data do.

The above comparisons appear to substantiate use of the dynamic-
camber concept for approximate calculation of forces and moments on low-
aspect-ratio flat plates undergoing pitching rotation and translation
while submerged in an infinite fluld. The extension of these concepts
in the nonlinear form to the case of a pitching body planing on a surface
of discontinuity is made on the basis of the previously mentioned simi-
larity, demonstrated by Wagner, between the lower surface pressure distri=-
butions on the submerged alrfoil and the planing plate. It is further
believed that this concept may be extended to include other body shapes -
for example, dead rise hulls and skis - after making suiteble modifica-
tions to the design plots presented in a subsequent section of thils paper.

LOAD AND MOTION EQUATIONS FOR BODIES UNDERGOING UNSTEADY
PIANING WITH ROTATION IN PITCH

General Considerations

In order to determine the loads and motions of bodies undergoing
combined rotation and translation through a water surface, the concept
of an equivalent or effective planing velocity established in reference 17
is applied and extended to include rotational effects. This velocity U
is derived with the aid of figure 5 from which it may be observed that
the horizontal velocity of the keel-level water~intersection point rela-
tive to the step due to rotation is defined as

1

Effective forward velocity = - T

(27)
The water rise is neglected in this calculation for simplicity since its
effect is only noticed for short bodies as shown in reference 17 but it
is included in camputations of wetted area and aspect ratio as in refer-
ence 18. The effective forward velocity of an impacting body relative
to the undisturbed water from translational motions is

Effective forwerd velocity = X + —2 (28)
tan T

The effective forward veloclty of the keel-level water-intersection point
is obtained through the summation in the horilzontal direction of the
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effective velocities derived from the rotational motion plus the effec-
tive velocities derived from the translational motions. Therefore, if
equations (27) and (28) are combined with the equation 1 = z/sin T, the
effective planing velocity U of the keel-level water-intersection point
with the step as a reference point is obtained as

. Zg 25T _ -t
= - = 2
U=+t giner sinT (29)

where € is defined as the downward velocity of the hull or hydro-ski
directed normal to the keel. The instantaneous velocity in cambination
with the instantaneous values of the dynamic camber &, the trim T, and
the wetted length-beam ratio determine the load and load distribution on
the impacting body including rotationsl effects.

The wetted-length—~—beam ratio N, is determined by the substitution
into figure 6 of A defined as the ratio of the length from step to
keel~level water intersection to the beam. This plot is reproduced from
reference 18 where it was constructed fram the results of a planing-data
analysis ylelding the variation of the bow water rise for a rectangular
flat plate.

The instantaneous two-dimensional hydrodynamic normal-force coeffi-

Fy/b
clent cy* = 5 N S is obtained for each value of instantaneous trim
TAyD
and dynamic camber & = —§ﬁ_ by graphical integration of the lower-

surface pressure distributions of figure 3. (The expression cg in this
figure is replaced by MNyb for the hydrodynamic case.) The resulting
plot is presented as figure T(a). The three-dimensional instantaneous
hydrodynamic normal-force coefficient CN* is obtained through the use
of the three-dimensional correction plotted in figure 8 which was derived
from experimental high-speed planing data (ref. 19). For the endpoints
of Ny =0 and N, = o, the theoretical solutions given in references 20

and 18, respectively, are plotted in figure 8 so that values of 1lift
coefficient between the endpoints and the experimental length-beam ratios
can be estimated. Since the same aspect-ratio correction is applied to
the rotational component of the force as to the translational component
as in equation (22), Cy* may be substituted for Cy in the use of

figure 8. Therefore, the cN* for any trim may be found on the
Ny = 0 curve and CN* is the value on the appropriate A; curve at
the same trim. (Refer to line of long dashes in fig. 8.)
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Tn order to determine the center-of-pressure coefficient about the
step Cﬁp fram which the instantaneous pitching moment is obtained, use

is made of the effective trim concept mentioned in the previous section.
This effective trim T, 1is obtained by substitution of the longitudinal-
center-line normal-force coefficient CN*/B into figure 8. The trim at
which this value intersects the AN; = O line is the effective two-
dimensional trim. (Refer to line of short dashes in fig. 8.) This trim
Te 1in combination with the value of B previously selected may then be
gubstituted into figure T(b) to obtain the three-dimensional dynemic-
camber center-of-pressure coefficient

* ¥*
C* = MS - CII].S (50 )
cp *.

Figure 7(v) was also obtained fram graphical integration of the pressure
distributions of figure 3.

The effects of linear and angular acceleration of the virtual mass
are neglected in this analysis since these terms are believed to be small
for the quasi-steady, low-aspect-ratio case under consideration. The
angular acceleration term is thought to be of the same order of magnitude
as the term for the linear acceleration of the virtual mass normal to the
keel, which was shown to be small for narrow bodies in reference 18.

Ioad and Motion Equations for Free-to-Trim Body
Jmpacting on a Water Surface

The complete load and motion time histories for a freely trimming
body impacting through a water surface may be determined by means of
step-by-step methods of calculation. Since the instantaneous hydrodynamic
force and moment may be computed approximately for any set of instanta-
neous conditions by means of the dynamic-camber analysis in the previous
section entitled "General Considerations," it 1s necessary only to relate
this force and moment to the dynamics of the body to obtain the incremental
changes in accelerations, velocities, and drafts. The entire time histo-
ries can then be synthesized from these incremental steps.

The required load and motion equations may be set up with the aid of
figure 5(a). The hydrodynamic force is assumed to be directed normal to
the keel since viscous forces are usually small in hydrodynemic impact or
high-speed planing. The force equation in the normal direction is therefore

- - - -HY
SF =Fy+L-Wecos T = ¢ (31)
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If the aerodynamic 1lift L, which is taken normal to the keel, is assumed
to be equal to the normal component of the weight, L -« W cos T 1s egqual
to zero and these terms are eliminated fram equation (31). The force
equation for the direction parallel to the keel is omitted since for
practical trims all forces in this direction are negligible.

The upward trimming moment about the center of gravity is
M = Fy(r - B) + Mp + M, = I7 (32)

Although the moment ﬁr arising from the hydrodynamic force on the
afterbody is unknown at this writing, it is included to remind the reader
that it i1s an extremely important term in many practical impacts and can
only be neglected for portions of the impact where the moment contributed
by the afterbody is negligible. If the aerodynamic 1lift is assumed to be
colinear with the normal component of the weight force (aerodynamic moment
equals zero), then ﬁb goes to zero and this term is eliminated from

equation (32).

The effective forward velocity of the keel==level-water intersection
in space may be obtained in a manner similar to that used in deriving
equation (29) by vectorially adding the effective forward velocity due to
translation of the center of gravity to the effective forward velocity
due to rotatlion of the hull sbout the center of gravity. The resulting
equation is

S (33)

sin T

where ¢ 1is obtained from integration of equation (31) and + from
integration of equation (32).

The draft of the step 2z 1s obtained from the vector addition of
the vertical displacement of the center of gravity and the vertical dis-
placement of the step relative to the center of gravity and may be
expressed as

Zg = z + E(sin T - sin TO) + J(cos T = COS TO) (34)

where the subscript O denotes the instant of contact between the water
and the hull. A suggested step-by-step computational procedure for
obtaining the load and motion time histories which utilizes the gbove
equations is given in appendix C.
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Load and Motion Equations for a Trimming Hydro-Ski Mounted
on a Shock Strut and Impacting on a Water Surface

The trimming shock-mounted hydro-ski case is handled in a manner
similar to that for the free-to-trim body. The equations of motion are
derived with the aid of figure 5(b). The summation of forces on the
hydro-ski normal to its keel, if the mass and inertia of the ski can be
neglected, is

SF = Fy - Fg = Fgt = 0 (35)

where the forces Fy and Fgt' are considered positive when they are

acting upward on the fuselage. The summation of the forces on the fuse-
lage normal to the hydro-ski keel is ’

zF=(L-w)cos-r+Fa+Fa‘=-1gii=-?glﬁa (36)

Wwhere the assumption is made that the alrcraft fuselage does not trim
during the impact, and where ¥Fy; 1s the normal force applied at the

pivot and Fgr 1is the axial force applied by the shock strut which is
assumed to be alined normal to the keel for convenience. The fixed-trim
assumption has been borne out by experiments with hydro-ski equipped air-
planes which showed little trim change of the fuselage during the immersed
phase of any given impact.

The shock-strut reaction Fgt for the general shock strut with the

hydro-ski pivot in front as in figure 5(b) involving damping force propor-
tional to some power of the telescoping velocity and some arbitrary form
of springing is

Fa' = K[P(rg - 7] + clp+| 2 (572)
for strut compression and

For = -K[p(7 - 7o)] - @'l7il? (370)

for strut extension where K 1is the spring force function which, in
general, may depend on P(T - TO) and in the linear spring case reduces

to the ordinary spring constent, G and G' are the demping coeffi-
cients, and d is the damping exponent. For the case of the hydro-ski
pivot behind the shock strut, G 1is replaced by -G and =G' is
replaced by G'. The value of P is negative for this aft location of
the hydro-ski pivot. .
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The upward trimming moment on the hydro-ski sbout the pivot (a) may
be expressed as

SMg = Fy(r = E) + FgtP = Iyt = O (38)

This sum is equal to zero since the inertia of the hydro-ski was assumed
t0 be negligible. The moment on the fuselage must be equal to zero since
the fuselage does not trim even though fuselage inertia is finite. The
fuselage moment equation is not given here since it would serve no useful
purpose in view of the fixed~trim qualificatiom.

The effective forward velocity of the keel-=level-water intersection
in space given previously as equation (29) becomes in terms of the motions
about the pivot point (a)

Zg (E - 1)7
+ -
tan T sin T

(39)

U = xq +

The draft of the step 1s determined by vector addition of the vertical
displacement of the pivot and the vertical displacement of the step rela-
tive to the pivot and is expressed as

Zg = Zg + E(sin T - sin To) (%o)

The velocity of the point a (and the sirplane) may be found from inte-
gration of equation (36) and the anguler velocity and displacement may be
obtained by integration of equation (38).

DISCUSSION OF SAMPLE SOLUTIONS

In order to demonstrate the application of the dynamic-camber theory
to unsteady planing problems, several sample solutions have been made for
chine~immersed impacts. These solutions have then been compared with
further simplified theoretical solutions for which the effect of pitching
rotation on the pressure distribution was ignored by setting & = 0 which
for low trims is similar to the theory of reference 21. (When & is set
equal to zero for a pitching flat plate impacting through or planing on a
water surface, the instantaneous pressure distribution on this plate is
assumed in this paper to be the same as that for a similar plate steadily
planing on a water surface at the same conditions of trim and draft at the
forward velocity x which is equal to the effective forward velocity U
of the body undergoing unsteady motion. Thus, the theory for & = 0 is
termed herein as the effective forward velocity theory.) Comparisons were
also made with still further simplified fixed~trim solutions (% = 0) from
reference 18 in order to demonstrate the effect on the hydrodynamic
behavior of ignoring the trimming terms.

S—
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For simplicity, it has been assumed in the sample solutions that
both hull forebody and ski bottoms are rectangular flat plates, that the
aerodynamic 1ift is equal to, opposite, and colinear with the weight,
and that the hull afterbody does not contact the water. A computation by
the proposed methods for an actual impact does not have to be restricted
to such a high degree if estimates of aerodynamic forces, afterbody water
loads, and conversion factors for cross-sectional shapes other than the
flat plate are available from theory or experiment.

Free-to-Trim Hull

Time-history solutions are presented in figures 9(a) and 9(b) for
freely trimming, narrow hulls, restrained in yaw, roll, and lateral
motions, impacting on a water surface. (See fig. 5(a).) The solutions
for the vertical and trimming motions for a moderate beam loading Cp = 2,

are plotted in figure 9(a) with the contact conditions

where Cp = 3
pgb

listed under run I in table I. For thils case it i1s evident from fig-

ure 9(a) that the dynamlc-camber solution does not differ greatly from

the solution for & = 0 insofar as vertical acceleration of the aircraft
15 concerned but does give somewhat different rebound velocities (Z at
emergence from the water) and draft histories. The trimming velocity at
rebound 1s also somewhat modified. Comparison with the fixed-trim theory
indicates, as expected, large errors in trimming motion through use of the
fixed-trim assumption but shows for this case that vertical accelerations
of the center of gravity can be fairly closely estimated by the fixed-
trim theory, whereas rebound velocity and draft history show some disagree-
ment with trimming-theory results. Some of these results are more or less
what would have been expected from a short extrapolation of the theoret-
ical and experimental results for a nonchine-immersed, trimming float

(ref. 22) into the moderately chine-immersed region. In this reference
also, the effect of trimming in modifying the vertical center-of-gravity
accelerations is shown to be small.

Ags the beam loading is increased so that deeper immersions with
larger wetted-length-beam ratio N, result, the effect of rotation on

the vertical motions was expected to increase for a given pitching moment
of inertia since & 1is proportional to Ay. This is borne out in the

solution for a higher beam loading Ca = 16, presented in figure 9(b)
A

with conditlons at contact listed under run IT in table I. For this case,
figure 9(b) shows that the dynamic-camber solution departs still further
from the solution for ® = 0 although the difference in the maximum
vertical acceleration of the center of gravity is not appreciable. The
fixed-~trim solution appears to give satisfactory results for this case
only as a very crude approximation for the wvertical motions after the
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time of maximum acceleration. As a matter of interest, it might be
pointed out that, in figures 9(a) and 9(b), the dynamic-camber solution
falls between the fixed-trim solution and the solution for & = 0.

From figures 9(a) and 9(b) and the assumption that the dynamic-camber
theory is valid at least for estimating rotational effects, it might be
concluded that the proposed theory might be of some value in camputing
flying~boat landing characteristics for the following cases: where the
shape of the load-time history is significant; where the trimming history
is significant in determining the initial conditions of subsequent impacts;
for seaplane porpoising calculations; or possibly for unsteady, low-aspect-
ratio hydrofoil motions for both the deeply immersed case; and the case
where the upper surface of the folil may be unwetted. The possibility
should not be overlooked also that, for same flying-boat configurations,
the effect of rotation on the vertical motions might be even more signif-
icant than that indicated in figures 9(a) and 9(b) since the sample cases
chosen were selected more or less at random and are not necessarily typi=-
cal of the worst cases. Also the effects of afterbody immersion and
aerodynemic moments on the rotational velocity may increase the rotational
effects on the pressure distribution. (Note that, for the sample cases
of runs I and II, the rotational velocity at contact +O is not very
large.) A simple criterion for evaluation of the effects of rotation is
the magnitude of & which can be estimated for different hulls and impact
or planing conditions.

Trimming Shock-Mounted Hydro-Ski

Time-history solutions are presented in figures 10(a) and 10(b) for
water impacts of an aircraft equipped with pivoted hydro-skis with shock-
strut restraint. (See fig. 5(b).) 1In these solutions, the following
assumptions are made: +the ski mass is negligibly small; the aircraft
fuselage itself does not trim during the impact; the shock-strut spring
force 1s proportional to the telescoping displacement; the damping force
is proportional to the square of the telescoping velocity; and the shock-
strut axis remains more or less normal to the hydro-ski keel.

The solution for a moderately high hydro-ski beam loading (QA ~ 16)

with the ski pivot forward of the shock strut is plotted in figure 10(a)
with conditions at contact listed under runm IIL in the table of initial
conditions. The forward pivot location type of mounting is covered by
the more general class of mountings for which the ski trim tends +to
decrease on contact with the water. The difference between the dynamic-
camber solution and the solution for & = O for the case of figure 10(a)
is seen to be practically insignificant. It probably would not be fair
to compare the solutions for the trimming ski with those for the fixed-~
trim shock-mounted ski since the attachment point of the shock strut to
the ski for the trimming case and the trim selected for the fixed-trim
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case are belleved to be critical. In order to make comparisons between
these two types of mounting, some rational basis of comparison taking
into consideration the effects of differences in the large number of
existing independent variables must first be evolved. As a matter of
interest, the fixed-trim solution (same case but with shock strut locked
in extended position) is presented to indicate the degree of load alle-
viation obtainable for this example case with the shock-mounted trimming
ski.

In figure 10(b) the solution for run IV in table I which involves
a very high beam loading (QA = 152) and a forward location of the ski

pivot point is presented. For this case, the departure of the dynamic-
camber solution from the solution for & = 0 1s slightly greater than
that for figure 10(a) as would be expected from an examination of the
component values of ©®. The heavier loading of the ski in run IV meakes
for larger Ay which, as for the trimming hull, results in larger values

of &.

Apparently, from figures 10(a) and 10(b) for the trimming hydro-ski
case with the forward pivot location, the theory for & = O may be sub-
stituted for the dynamic-camber theory for time-history calculations at
least up to the time of meximum acceleration. Comparison in figure 10(b)
with the fixed~trim solution (shock strut locked in the extended position)
again shows the load reduction achleved with the trimming shock-mounted
ski. TFor this case, the reduction in maximum load is considerably smaller
than that for the lighter beam loading case of figure 10(a), whereas the
ratio between the fixed and trimming times to peak load is greater for
figure 10(b). For both cases, the rebound velocity is believed to be
greatly reduced for the trimming mounting.

A further evaluation of the variation of the quantities making up 8
indicated that, for those cases where the pivot is behind the shock strut
or more generally where the ski trim increases on contact, the efflect of
trimming on the vertical motions might be greater. An attempt was meade
to make a numerical solution on an electronic digital computer for this
case which was unsuccessful due to the choice of the number of significant
figures used in the computer to describe the design charts in this paper.
This part of the discussion is therefore included to caution the user of
this type of computer to make use of an extra number of significant fig-
ures in the description of the design charts for cases with aft pivot
locations. Although the preliminary work with the electronic digital
computer indicated that the effect of rotation on the loads and motions
was considerably increased for this case, further attempts were not made
to obtain this solution since it was thought at this writing to be of less
importance than runs IIT and IV. It is believed that numerical solutions
for the case of the shock-mounted ski pivoted in the rear should not be
exceptionally difficult where the right choices of increment size and
number of significant figures are made.
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CONCLUSIONS

The proposed dynamic-camber theory has been derived primarily for
the analytical determination of the loads and motions of seaplanes with
high length-beam ratios, shock-mounted hydro-skis and other bodies
impacting or planing on a water surface while undergoing pitching rota-
tion. Coamparison of this theory with oscillating wing theory, with some
low-aspect~-ratio oscillating wing data, with a lower order unsteady
planing approximation neglecting the effects of rotation on the pressure
distribution (effective forward velocity theory), and with fixed-trim
impact theory has led to the following conclusions:

1. The theoretical effect of rotational velocity on the longitudinal
pressure distribution of a pitching flat plate for an increasing angle
of attack is to broaden the stagnation peak and decrease the instantaneous
ratio of meximum pressure , to average pressure, whereas a decreaslng angle
of attack yields the opposite results. This effect is probably signifi-
cant for hulls having large bottom panels which would have to be designed
stronger to withstand high average pressures during upward pitching or
small bottom panels which would have to be strong to take the high local
pressures in downward pitching.

2. For the low-aspect-ratio case, the proposed theory, with the
exception of the sensitive moment phase angle, is in fair agreement with
Lawrence and Gerber's three-dimensional, unsteady, linearized airfoil
theory and with some oscillating airfoil experiments for an aspect ratio
of 2. For the infinite-aspect-ratio case, because of the lack of incor-
poration of a certain frequency-sensitive circulation term into the pro-
posed. theory, it is in relatively poor agreement with Theodorsen's exact,
two-dimensional (infinite aspect ratio), unsteady, linearized airfoil
theory for zero angle of attack. This circulation term is apparently
unimportant for low aspect ratios.

3. For freely trimming, narrow seaplanes, the dynamic-camber,
effective-forward-velocity, or fixed-trim theories give similar values
of maximum acceleration but, where accurate time histories of transla-
tional and pitching motions are required, especlally for the heavier beam
loadings, a theory taking into account the effects of pitching rotation
such as the dynamic-camber theory or some equivalent thereof is probably
desired.

L. For trimming hydro-skis for which the trim decreases on contact
(pivot located forward of the shock strut), both the dynamic-camber and
effective-forward-velocity theories give similar results. Both theories
predict load reductions for the trimming, shock-mounted hydro-ski over
the equivalent fixed case (shock strut locked in the extended position)
although for the higher beam loading, the load reduction was smaller for
the cases examined, whereas the time to peak load was increased over the
fixed trim case.
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5. For low-aspect-ratic pitching hydrofolls either deeply immersed

or planing on the surface, the dynamic-camber theory is believed to offer
some promise.

Langley Aeronautical Laboratory,
National Advisory Cammittee for Aeronautics,
Langley Field, Va., May 24, 1956.
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APPENDIX A

PRESSURE DISTRIBUTION ON A CAMBERED ATRFOIL AT

LARGE ANGLES OF ATTACK

This appendix is concerned with the determination of the pressure
distribution on a cambered airfoil at large angles of attack by means of
conformal mapping procedures. This distribution is required for obtaining
the loads and maments on such an airfoil.

The two-dimensicnal. incompressible flow solution for a cambered sir-
foil at 0O° angle of attack is given in appendix A of reference 4. Since
the present paper is concerned with large angles of attack, a similar
though more general analysis is required. This solution is developed
with the aid of figure 2 as follows:

The exact complex potential for the flow including circulation sbout
a circular cylinder of radius R for all angles of attack as represented
by a section in the Z" plane is (see ref. 8, arts. 6.22 and T.12)

. 2 1
W = -U Z"e-la + —E—.- - ir log Z—— (Al)
Zue-lm R

where o 1is the angle of attack between the velocity wector U of the
fluid far from the body and the negative X"~axis and I' is a constant
denoting the circulation.

The circle in the Z"-plane may be conformally transformed into a
cambered. airfoil in the Z-plane by first mapping it on the Z'-plane where
it is converted to another circle of radius R +the center of which is
elevated in the Y'-direction a distance h. (See fig. 2.) The converting
function required by this process is

tan & (A2)

S
i
N
1
'_l
=
H
N
]

#ﬂ@

where c/h is the distance from the origin to the intercept of the circle
on the X'-axis and tan d = h%. The circle on the Z'~plane is next con-

verted to a circular-arc airfoil of length c¢ and meximum ordinate 2h
in the Z-plane by the Joukowski transformation

(A3)
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In order to determine the pressure distribution on this circular-arc
airfoil, the velocity distribution about it must first be known. Before
this velocity distribution can be determined, the circulation constant T
of equation (Al) must first be determined with the aid of the Kutta con-
dition, which predicts smooth flow at finite velocity off the trailing
edge. Thus, the complex velocity dw/dZ must be finite at the point

Z = 92- + 10 in the Z-plane which means that dw/dZ' = O at the point

Z' =& + 10 in the Z'-plane. In other words, a stagnation point exists

i
at the intercept of the circle and the positive X'-axis in the Z'-plane.

Actually a stagnation point also exists at the point Z' = = ﬁ + 10 the
intercept of the circle and the negative X'-axis.
The complex velocity about the circle in the Z'-plane may be obtained

from the complex velocity in the Z'"-plane by means of the following
equation:

aw aw az"
@' az" az' (k)

The complex velocity in the Z"—plane is obtained by taking the derivative
of equation (Al) with respect to 2" as follows:

s 2 .
R e L (45)
Z"2e—1a 2

RJ¥

Since dz"/dZ' = 1, a combination of equations (Ak) and (A5) yields the
complex velocity in the Z'-plane which is

aw ~iq, RZ il
— = &Jfe -— ] - A6
az' < Z"2e—ia> 7" (6)

which is identical to equation (A5). TIn order to evaluate this expres-
sion at the trailing edge of the airfoil, the value of Z" at the

stagnation point z" = ﬁ - %f tan & = Re"18 must be substituted into

equation (A6) which then becomes

s 2 .
%%T = 4U<e il _ _ R. -ia> . _ir 7 (A7)
R

Y AT YV Yt s
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Since the velocity at a stagnation point is equal to zero, equation (AT)
is equated to zero and yields for the circulation constant

I' = 2UR sin (o + B) (A8)

IF the circulation constant is inserted into equation (A6), the complex
velocity in the Z'-plane becomes

. 2 o s
dw' = Ule-ix - _R + 2iR 51n£a +8) (A9)
az gn2g-1a 7

The complex velocity in the Z-plane is obtained by means of the equation

dw _ dw d4dz' _ dw/az’
iz az' &z  dz/az’ (410)

The expression for dZ/dZ' is obtained by differentiating the Joukowski
transformation (eq. (A3)) with respect to 2Z' which yields

2
=1 - (/)" (A11)

Z'2

&

ZI

[o?

The general complex velocity of the fluid about the cambered wing in the
Z-plane is obtained through combination of equations (A9), (A10), and
(All) and gives the equation

-.Ul:e-i& _ 22 . + 2iR Sirzll('C(, + 6)i|Z|2
-1
Z"

&y - = 5 (a12)
=" (§)

The velocity at the surface of the airfoil may be determined through
substitution of the expressions for Z" and Z' on the body into
equation (Al2). These expressions in terms of the modulus and arguments
of zZ" (R and 6, respectively) and the angle © denoting the camber
magnitude are

7" = Rel® (A13)

and

7' = Rel® + iR sin 5 = R(e®® + 1 sin &) (A1)
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The complex velocity at the airfoil surface obtained through substitution

of equations (Al3) and (Allk) and the expressicn i% = cos & into equa-

tion (Al2) is written

dw - 2iUe‘ie[§in(6 - a) + sin(a + aﬂ (e1® + 1 sin 52? (A15)
az 0 216)

(1 - 21el¥sin 5 - e
This camplex fluid velocity may be subdivided into its components in
the X- and Y-directions (u and v, respectively), by the equation

dw .
— = -u + iv Al6
F (16)
The square of the resultant velocity vector g 1is then obtained through
multiplication of the complex velocity equation (A16) by its conjugate

velocity <%%> = -u ~ iv as given by the equation

(ALT)

q2=u2+vg=dei,.>=d

az\daz, az

ST

az
This multiplication 1s easily accomplished through use of the following
complex conjugate relations. If Qp, Qp, and Q5 are three complex
quantities and if
I - a0 (118)
az 15275
then

<§ZE> = Q19,9 = Q05 (A19)

and therefore equation (Al7) takes the form

@ - j—;f) = (43) (%) (%53) (420)

Thus, q? may be obtained from equation (Al5) by an operation similar
to equation (A20) with the following result:

2

2 (210e=19) (~210e1®) [sin(e - «) + sin(a + 5):[2 [(e® + 1 sin®) (e=3® - 1 sin 5)]

(l - 21e'%in 5 - ezie)(l + 21e"¥5in & - e‘zie)

, i
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or

29 ,
2 2)] (142 ein 0 sin & + sin) (A21)

cos(% - )

The distribution of the pressure p about the cambered airfoil may
be determined by means of Bernoulli's equation which for the case of
steady motion with viscous and gravitational forces neglected may be
written as

cOoSs (d, +

g® = U=

n|®

p + lg—_pqe =D, + %QUE (A22)

where p_ and U designate the pressure and velocity far away from the

body. The pressure far from the body is set equal to zero; this condition
allows equation (A22) to be written in nondimensional form as

2 @) (25

The ratio of the pressure on the body to the stagnation pressure -]2--pU2

is then determined through combination of equations (A21) and (A23) and
is written

2

(@]

O

n
TN

Q

+
o
| @

>(1 +2sin 0 sin & + sinZs) (A2k)

l\)_g—“
[o
AV}
Q
O
0
—
1o
!
nj®e

)

It is noted that this pressure ratio appears as a function of the vari-
able © which is a parameter in this analysis since the position along
the airfoil can also be obtained only as a function of ©. The X-location
of the pressure is determined through combination of eguations (A3), (Alk),

and the well-known relation Rel® = R(cos 6 + i sin 0); thus,

o) s .
Z =R{¢[cos @ + i(sin 6 + sin 8)] + (f‘) [COS 0 - i(sin @ + sin 5?]

cos8 + (sin ® + sin 6)2

(A25)




NACA RM L56E31L RS 35

and, since E = R cos d, the real part of this expression becomes in

dimensionless form

2
% _ &COS ) 1+ CcO8“0 5 (A26)
cos & 1+ 2sin 6 sin & + sin®

Thus, the pressure distribution about a two-dimensional cambered airfoil
deeply immersed in a fluld and at any finite angle of attack is given by
equations (A24) and (A26) where potential flow may be assumed.
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APPENDIX B

IOADS AND MOMENTS ON A CAMBERED AIRFOIL OF INFINITE SPAN AT

FINITE ANGLE OF ATTACK BY BLASIUS' THEORY

The loads and moments on a cambered alrfoil might have been obtained
through integration of the pressure distribution equations (A24) and (A26).
It was believed to be simpler, however, to obtain these quantities by
means of Blasius' theory (ref. 7, art. 7.1 or ref. 8, art. 6.4) by consid-
ering the flow far from the body.

According to Blasius, if the square of the complex velocity can be
expressed by the series

2 H Hy
)~ - =+ + 2
(dz> HO+Z+22+... (B1)
where Hy, Hy, Hp . . . are independent of Z, then for large values

of 7 (far away from the body) the camplex force on the body may be
written as

D il _
.B- + = 'prHl (BE)

where D is the drag and L 1is the 1ift. The two-dimensional moment
about the origin (located below the midchord in the Z-plane of fig. 2)
My /b may be written as:

T - R(roitp) (83)
where /Q refers to the real part of the expression.
In order to obtain dw/dz for the cambered wing in the agppropriate

form, equations (A2), (A3) (inverted), (A5), and (A8) are first restated
as follows:

N—-
Il
D3
1
e
ng
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A _ _yfe-ic - B2\ _ir
d.Z" Z"2 le

' = 2UR sin{a + &)

Equation (A2) transforms the symmetrically located circle in the Z"-plene
into a displaced circle in the Z'-plane offset vertically upward a dis-
tance h. Equation (AB) is an inverted Joukowski transform which converts
the offset circle in the Z'-plane to a circular arc of length ¢ and maxi-

mum height 2h = % tan & in the Z-plane. The positive sign for the

radical was chosen since 7 and Z' must both become large far from the
body. Equation (A5) gives the general complex velocity of the fluid
gbout the circle of radius R in the Z'"-plane with circulation I' where
the resultant velocity of fluid U at o is inclined at an angle a +to
the X'"-axis.

The expression for the complex velocity in the Z-plane can be deter-
mined from the complex velocity in the Z'"-plane by use of the relation

dw _ dw az" (B4)
az  az" az

In order to obtain dz"/dZ, 2" must first be expressed as a function

of Z; this expression is obtained through a combination of equations (A2)
and (A3) so that

g |(Ef - (1) - o )

If the negative root had been chosen in equation (A3) instead of the
positive one, then, as Z approaches =, Z" approaches O and this
condition means that the flow outside the wing would be transformed to
the inside of the circle instead of the outside of the circle for which
the flow is defined. The derivative of 2" with respect to Z is
therefore

3

+ —————3;———5- : (B6)
- @)

A combination of equations (A5), (B4t), and (B6) results in the expression

S
I
o

2 ia
a 1 1 - R i
v Ly L ||ulete - Re ) _1iD (B7)
dZ 2 c 2 Z" Z
2y1 - (5-)
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In order to obtain the series expression for (dw/d.Z)2 required in
equation (B1), the series for dw/dZ will be synthesized and then squared.
The series for the first bracketed term from equation (754) of refer-

ence 23 may be written as

L 6
%+___l—-—=1+@+3@+10(_§g>_+... (B8)
Z Z

2
where (é%) approaches O for large values of Z far from the body, as

required by Blasius' solution. The series for Z" as a function of 2
from equation (B5) and equation (753) of reference 23 may be written

2 3 6
z"=z-ih-(ﬁz)-(ﬁ5) _2<§) - (B9)
Z Z
where (5%)2 approaches O. The series for Z"2 "is therefore
PR b e 6
7" = 72 - 2ing - [he + 2<L%)2] + 21h§§> - (l%e) + 2lhgl%> - 2(? + ..
Z Z Z

(B10)

The series expansion of dw/dZ may be synthesized from equations (BT),
(B8), (B9), and (B10) and may be stated as

&

7 2 m 2
22-21hz-[h2+2(1%)2:|+ﬁl-@+... Z-ih-(ﬁz)-ﬁ)_
%

72

c\2 o\t
v _ 1+ L)- + 3 (E + .. | [USe-la o Rzeia‘ - ir
z2 L

(B11)

SRR

R | — .
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which, after multiplication and reduction, yields the equation for the
first few terms which are all that are required in this paper

. . 2
aw _ qp-la _ il L 1 2.1 _ yre\ o-ia
v _ Ve 2 +Z2E‘h+URe U(E> e :|+. .. (B12)

This expression is squared to again yleld the first few terms required
by the Blasius' solution for the square of the complex velocity

(

2 Y . ~ia " 2
) = vPeBle 2ille . -l-E-EE + 2Urhe™1% 4 oU"R2 - 2U2( £) e‘2i°ﬂ ...
z

B2

(B13)

Thus, the value for Hy of equations (BL) and (B2) is from equations (A8)
and (B13)

- i +
H) = 21[Ue™1% = yct s—m—(i‘——f’l(cos o -1 sin a) (B1k4)
cos &
since R = E—cos 8. A combination of equations (B2) and (Blk) yields the
two-dimensional 1ift and drag forces
L 2., COS @& o
= = xpU ¢ —=—= sin(a + & Bl
2 = wpUTe 2222 sin( ) (B15)
D 2. s8in o
= = qpU~c == si + 3
= pUTe === n(a ) (B16)

The section lift coefficient per unit span is therefore

c, = —512—5 = 2n(sin o cos o + cos2a tan &) (B17)
%(C)U

The moment is obtained in a similar manner. From equation (Bl}) the
value of Hy, used in equations (Bl) and (B3) is

: 2
H, = -° - 2UThe™1% - 2U°R2 4+ QUE(E-) e~2la (B18)
The real part & of iH, is therefore
PN
R iH, = -2u ()%) sin 2o + 2UTh sin o (B19)
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The two-dimensional pitching moment about the origin expressed
positive for increasing o 1s therefore obtained from combining equa-

tions (A8), (B3), and (BL9) with expressions R = —S— &and h =S tan &
4 cos B 4

to yleld the equation

22
%? = E£%£ii— sin @ cos a(l - ten®® - tan o ten &) (B20)
The section moment coefficient per unit span about the origin is therefore
M, /b )
My = éﬁé—g = g sin a cos a(l - tan®® - tan o tan 5) - (B21)
U

In order to make comparisons with the thin airfoill low-angle derivation
in chapter II of reference 9 (see eq. 10.8 of ref. 9), the moment must
be taken about the leading edge. An upward pitching moment (increasing
trim) is considered positive in this report and negative in reference 9
and thus have opposite signs. TFor small angles of attack, therefore,
the two-dimensional upward trimming moment about the leading edge may be
stated for the present derivation
Mg _ oL L e
—,t)—-_-'T(C‘-r):——(g-r'f‘—) (B22)

where r 1s the distance between the center of pressure and the trailing
edge. Since, however, the moment about the origin is

= -I[E& -
My = -1{(3 r) (B23)
the moment about the leading edge may be written
= [
Mg = -L S+ M, (B2Y)

which, in combinstion with equations (B15) and (B20), becames

M 2
LE _ “pUzc 2 808 & gin(a + 8) - sin @ cos o + sin o cos « tand +
b N cos d
sinZq tan é] €325)
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The upward trimming section moment coefficient per unit span about the
leading edge is therefore

M; /o
E = _IEL = -nisina cos @y 45y (1 + cos20) (B26)
m, P 2.2 2
¢ U cos
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APPENDIX C
METHODS OF SOLUTION

General.- The means for making numerical solutions of the equations
for trimming bodies and shock-mounted hydro-skis are outlined in the
following procedures. Step-by-step processes must be resorted to, because
the equations do not lend themselves to explicit solution. Although the
methods suggested depend on linear extrapolation, any well-known step-
by~-step procedures may be applied.

Both example procedures assume the immersing body to be a flat
rectangular plate. In order to make solutions for other bottom shapes,
the theory of references 6 and 18 or planing data obtained with the
body of interest might be utilized in judicious modifications of the
charts of figures 6 to 8 whereas a value of the coefficient B for average
angles of dead rise greater than zero may be obtained from references 1k,
15, or 18. The equations in this appendix include terms representing
aerodynamic 1ift and pitching moment and hydrodynamic afterbody moment.
In order to make fairly complete solutions Ly the proposed methods
including the effects of these parameters on the overall hydrodynamic
motions and loads, it is necessary to know the variations of the aero-
dynamic and afterbedy terms with impact geometry either theoretically
or from experimental data. Both solutions presented here assume that
both aerodynamic and hydrodynamic forces are oriented essentially normal
to the keel and neglect the force due to acceleration of the virtual
water mass as was done in reference 18. The shock-mounted hydro-ski
solution assumes that the mass and moment of inertia of the hydro-ski
may be neglected, that exponential damping exists in the shock strut,
and that the trim of the airplane is constant during impact. The water
rise is taken into consideration only insofar as it affects the area
over which the hydrodynamic force acts while the rate of change of water
rise as a force increaser (see ref. 17) is neglected.

The numerical solutions are made with the aid of figures 5 to 8.
Bach time-history abscissa is subdivided into equal time increments of
duration At where the subscript n - 1 designates the values calcu-
lated at the end of the previous time increment eand n designates the
values being calculated. For many applications it is believed to be
advisable to select very small increments At for the first four or
five steps and larger increments from there on. The correct increment
size may be established by experience acquired in making several solu-
tions for a given problem and using different increment sizes for each
solution. The increment size may be increased until the point is reached
where the solutions diverge from the more accurate curve obtained with
a very small increment size. If a small-period oscillation is present in
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the curve, too large an increment size or too small an increment size

for the number of significant figures used to define the design curves
is indicated. The first point in the time-history solution is determined
by the initial conditions of the problem. The equations listed as com-
putational steps outline the arrangement of computation sheets. The
values determined from the repeated application of these equations when
plotted against + give the motions of the trimming hull or the fuselage
and shock-mounted hydro-ski as the case may be. TFor cases where d is
small, it may be taken as zero in order to simplify the calculations.

Computational steps for free-to-trim body with flat rectangular
bottom.- The computational steps for a free-to-trim body with flat rec-
tangular bottom are as follows:

. )
Tp-1(At)
2

(1) 7y = Tpoq + Tpop(at) +

(2) én = én—l + En_l(At)COS Th-1

1

_ Ty + e
(3) 7y = Zy1 + n__e_n_l (at)

(&) zgp = Zg(n-1) * Zn = Zp-1 * E(sin T, - sin Tn_l) + J(cos T - COS1h€Q

_ 2gn
I T,
(6) Ty =Ty + Ly (at)
(7) ’;’n = ’{'n_l + :'l:n_l(At)

Eh + (E - %nb)+n
sin Ty

(8) u, =

(9) Mm = £(An) (fig. 6)

Ly N,
(10) &y = ToMvn® 1 radians
20U,
28.65T Mypb
By = — W 4p degrees
Uﬁ

(11) cf, = £(Tys By) (fie. 7(a))
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(12) Cr =7 , ox " (See loop of long dashes in fig. 8)
Nn Nn

% * P 2
(13) Fn = Cn 2 7‘wnbaUn

Flfin + (Ln - W)cos T

wm) € =
(1) T, T
or, if wing lift may be assumed equal to the weight,
*
E - - Fin8
n W

*
(15) = f(an =0
) Tan = £\, 2y =
where B = 0.88 (See loop of short dashes in fig. 8)

(16) Copn = £(Tens Bn) (fig. 7(b))

* * *
(17) Mgy = FNnbMCcpn

M*

(18) %, = =0~ FﬁnEi_Mpn * My
I

or, if the resultant aerodynamic force may be assumed to pass through
the center of gravity and to be equal to the weight,

* *
= Mg - FypB

I

Tn

Computational steps for trimming rectangular flat-bottomed hydro-
ski with shock-strut restraint.- The computational steps for trimming
rectangular flat-bottomed hydro-ski with shock-strut restraint are as
follows: (This method is for appreciable damping only. For cases of
negligible demping on shock-strut extension (shock struts with dump
valves), use this procedure until T 1s a minimum, then use the fol-
lowing zero damping procedure until z =0 again.)

. )
(1) 7t = Tpe1 + Tno1(At) + -————Tn"]-;At)
(2) éan = éa(n-l) + ga(n—l)(At)cos Th-1

Ea( n=1 ) cos Tn_l(A't )2
2

(3) zgy = Zg(ne1) * ia(n_l)(At) +

+ E(sin T, - sin ’Tn_l>
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(4) A, = ——B

b sin Tn

(5) Eon = Ca(mer) * Ca(ao1)@F)

(@U=fw+@'Mﬂm4+%d&»

n .
sin ‘Tn

(7) N = £(An) (fig. 6)

(8) 5, = anb(fn—l + ?n_l(Am))(radians)

28.65Mmb -
n = A, T,

U (Tp-1 + ¥n-1(ﬁi)) (deg)

n

(9) ey = £(Tn> By) (fig. 7(a))

(10) Cﬁn = f(kw, cﬁn) (See loop of long dashes in fig. 8)

* _ % p 2., 2
(11) Fn = CNn > 7‘wnb Un
Fy + (I - W T
(12) E — _ "Nn ( n )COS n
an W/e

or, if wing 1lift may be assumed equal to the normal component of the
weight, then

X
T
an W
C*
— Nn -
(13) Ten £ B ° %wn =0
0.88 (See loop of short dashes in fig. 8)

where B

(14) Cepn = T(Tens Bn) (fig. 7(b))

 — *
(15) Mgp = FNnbanccpn
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/d

1
* *
. - + EF + PK|P(T,, = T
(16) = ¢ {2 en* o [7(= - o)
GP
where K in this case is a general spring function of P(Tn - TO), or

for the special case of linear spring force (K = constant) and turbulent
damping (d = 2)

* * 2
4 =+-Msn+EFNn+Iﬂ3(Tn—T0)
3

n s

—1/2
,l

GP |

where T, and To @&re expressed in radians. These equations apply only

for strut compression where the hydro-ski pivot is in front of the shock
strut. For extension of the strut with this arrangement the same equa-
tions apply with the exception that G 1is replaced by -G' which may
have a different value. For the case of the hydro-ski pivot behind the
shock strut, G is replaced by -G and -G' by +G'. Thus G changes
sign wvhen T goes through zero.
(1) %, = 2l

(at)

or more accurately to prevent divergence caused by small differences
between T and T

n n-1
. 3Tp - Mg+ g
n 2(At)

Computational steps for trimming rectangular flat plate hydro-ski
with shock-strut restraint (zero damping).- The computational steps for

trimming rectangular flat plate hydro-ski with shock-strut restraint
(zero damping) are as follows:

(1) Tx = Tpo3 = 3Tn_2 + 5T

(Subscript x denotes extrapolation.)

(2) Zan = ia(n—l) + 'C:a(n_l)(At)cos Tn-1

. ,
(3) 2gn = Zg(n-1) + Za(n-1)(Bt) + gaLn,l)COZ n (8) +

E(sin Ty = sin Tn_l)

z
- sn
() N = b sin Ty
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(5)

(6)

(7)

éan - éa(n-l) * ga(n—l)(ém)

b * (B - Agd) () + Tpa(88)

sin TX

U, =

N = f(7\n) (fig. 6)

b/, " .
{8) &, = g%i—(Tn_l + Tn_l(At)) in radians
28.65Mmb . .
&y = ———ﬁ;zza—(Tn_l + Tn_lCﬁt)) in degrees
(9) o, = £(7x> By) (fie. 7(2))
(10) Cﬁn = f(%w, c§n) (See loop of long dashes in fig. 8)
x 2
(11) Fyn = Nh 2 %wnbau
o+ ( - Wlcos T
(12) £ --m* Un-¥)
an W/e
or if wing lift may be assumed equal to the normal component of the weight,
then, .
S
an W

(13)

C
Nn
Ten © f< B’ Am=0 )

where B = 0.88 (See loop of short dashes in fig. 8)

(1)

Copn = £(Tens 8y) (fig. 7(b))

(15) M:n = Fﬁhb%wncgpn
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*
= 1 -1 Mgn ~ EFyn

(16) 'rn-'ro+1-)-K" >

for the general spring case where K-l is the inverse spring function.

For the special case of the linear spring (K = constant),

*

Mep - EFyn
2
KP
where T, éand Tg are expressed in radians.

Tp = Tg +

=T = Tn-1
(17) *n T
. T, -7
18) T, = = n-1
( o At
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TABLE I.- INITIAL CONDITIONS OF IMPACT
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Shock-mounted

Configuration Trimming hull tr ing ski
I II 111 v
b, ft 10 5 2 1
B .. 0.88 0.88| 0.88 | 0.88
Ch 1.98 159 | 16.26 | 132
G R I et R I e P 2 2
i R el e e 10 10
E, £t . 5 5 15 15
1b
- T R B 412 | k12
ft/sec
T, slug-ft2 . 1,600,000 |1,600,000 | =mem= |===--
J, ft . . .7 W7 | =mmmm | =mmmm
Ky, ID/Et « v v v v v v e e e [ e e 7,500 |7,500
Uy, Tt/sec . « . v o v v v v i | e e 22%.5 |223.5
Vo, ft/sec 135 135 | mmmmm | moeme
W, 1b . 123,500 123,500 | 8,250 |8,250
Zo, T« o o o o oo o o s e 0 0
Zg, ft 0 O memmm | mmme
iao: ftfsec . . . . .. o oL L L | mmmmeemee e L7 17
Zo, ft/sec 22.2 22.2 | mmmmm | mmmmm
B, deg 0 0 0 0
Yo, deg . 9.48 9.48 | 6.06 | 6.06
T e T el Rttt 57.9 | 57-9
t,s ft/sec 34.9 .9 | === | =
fg, ft/sec? 0 0| —cmmm {mmmmm
an, ft/sec2 ------------------ 0 0
B oe v v e e 0.592 0.592 | 2.23 | 2.23
p, slug-fto . 1.938 1.9%8 [1.938 |1.938
Ty deg . 5.5 5.5 15 15
o, radian/sec -0.087 -0.087 0
¥,, redian/sec?® . 0 0
U
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(b) Equivalent cambered plate in stream.

Figure 1.- Shape of cambered boundary.
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Figure 3.- Variation of lower surface-pressure coefficients with
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Figure 3.~ Concluded.
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at time of contact
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e

(a) Narrow trimming hull.

(b) Shock-mounted hydro-skis.

Figure 5.- Geometric relations of trimming bodies during water impact.
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Proposed theory (& varies)
— ———Effective forward velocity theory (& = 0)
——— —TFixed trim theory (t = 0)
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Figure 9.~ Comparison of approximate theories for computing motion-time
histories of freely trimming, narrow flying boats during water impact.

For initial conditions see table I.
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———————— Dynamic-camber theory (& varies)
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(a) Run III, forward pivot location.

Figure 10.~ Comparison of approximate theoriles for computing motion-time
histories during water impacts of aircraft equipped with trimming,
shock-strut-mounted hydro-skis. For initial conditions see table I.
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Figure 10.~ Concluded.
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